
j 

T 
' 

COPYRIGHT 

A.J.M. SOFTWARE 



DISK DOCTOR 
~ - COPYRIGHT AJM SOFTWARE 

This program is copyrighted and it is illegal to give or sell copies without 
the approval of the author. You should, however, make a backup of the program 
using any media copy utility, and store it in a safe place. 

This utility is similar in many respects to FILEMANAGER which is a 
comprehensive disk and file management system. If you are familiar with 
FILEMANAGER, it should be relatively easy to use this utility. Disk Doctor 
has only one purpose in mind: help rebuild damaged EOS directories. It has 
been carefully designed to be error free, smooth flowing, and user friendly. 
Since it does write to disks or tapes, it is recommendable to work from a 
backup copy, even when working with damaged disks. The program has the 
following features: 

Analysis of disk or tape contents 
Echo REM statements from programs 
Blank out damaged directories 
Initializing up to 6K of directory 
Compatibility with single/double/quad density 
Modification of directory entries 
Simultaneous viewing of disk contents 
Automatic marking of end-of-file 
Forward referencing directory entries 

The Program will NOT reformat disks or tapes, or repair damaged 
tracks/sectors . It will only be helpful if the Directory or CATALOG of the 
medium has been trashed and the rest of the medium still contains valid 
programs/files. Because of the way that Disk Doctor calculates allocation 
blocks, it should not be used for routine catalog editing functions. Use 
FILEMANAGER for that. 

WARNING: This utility will write to disks or tapes ignoring standard 
protection features (except write protect tabs). It is essential to carefully 
read all instructions, especially those on directory structure before using 
Disk Doctor. 

Address any questions about the program to: 

Guy Cousineau 
1059 Hindley Avenue 
OTTAWA Canada 
K2B 5L9 



-2-

MENU 

To start the utility, simply turn your ADAM on, insert your copy of DISK 
DOCTOR, and pull the reset switch. A title screen will appear and will remain 
while the program is being loaded. After a few seconds, a menu screen will 
appear: 

I Edit Directory 
II Read Block 

III Analyze Medium 
IV Change Default Setup 

source: 
V Disk Drive 1 / C / DS 
VI Single density 

Remove the system disk at this point, it is no longer required. The last 2 
entries denote the default setting for editing operations. The drive is shown 
as 'C' as is sometimes referred to in programs, and also by the 'DS' 
designation used by SMARTBASIC. To change this selection, simply press Smart 
Key V. To change from single/double/q~ad density, press Smart Key VI. Disk 
Doctor will run from either disk drive or either tape drive; the source drive 
selection will skip over any drives tGat are missing or inactive . 

Note that many option settings can be toggled simply by pressing the 
appropriate Smart Key. 

From any level of menu, pressing <ESCAPE> will back up one level. Pressing 
<ESCAPE> from the opening menu above will exit the program. 

THE PROGRAM WILL WRITE TO DISK IN ONLY 2 GASES: 

When you ask to INIT a bad EOS directory 
When you ask to save changes after an editing session 

The program will only write to the directory block(s) of the medium. Since it 
is possible to INIT up to 6K of directory , users should be careful not to 
overwrite data blocks . .. 

.:.. 



-3-

EDIT DIRECTORY 

This function is selected with Smart Key I from the opening menu . It should 
be used after obtaining a printout of the medium analysis. You should NOT 
start with READ BLOCK since it defeats the following check . 

Each time EDIT CATALOG is entered, the entire directory (up to 6K) is read 
into memory and remains until the next restart . All directory information is 
available throughout the session. The first time you edit a damaged 
directory, you will probably get the following message: 

Bad EOS Directory 
INIT medium (Y/N)? 

Be absolutely sure that you have the correct disk in the correct drive before 
you answer yes to this option -- you don't want to INIT the Disk Doctor system 
disk! You will be provided with an INIT menu selection screen from which you 
can select the volume name, disk size, and directory size. As a further 
protection, it will not be possible to change the medium to INIT. If you have 
made an error, press <ESCAPE> and change the drive from the main menu . 

It is advisable to INIT only lK of directory and modify the size later; the 
INIT option actually writes to all direc~ory blocks. I NIT will write a 
standard Header with VOLUME BOOT DIRECTORY and BLOCKS LEFT. The rest of the 
dire ctory will be filled with l's (not O' s ), to set the BLOCKS LEFT attribute 
in all positions. 

The EDIT DIRECTORY function is self correcting to save on calculations: 

Next file start is calculated as previous_file_start + 
previous_file_length . This is essential for full compatibility. 

Setting file length also sets used length. Used length must be s e t after 
if it is to be different. Note that it is essential to correctly s e t 
both the reserved_length and the used_length . 

The user is not allowed to change the Start Block of a file; it is always 
calculated by Disk Doctor . 



-4-

EDIT DIRECTORY FUNCTIONS 

EDIT DIRECTORY displays one directory entry at a time and use the following 
function keys: 

-<UP> <DOWN> to move forward or back one entry. You cannot move back 
before entry O or the past the last possible entry in the directory. 

-<HOME UP> moves to entry 0 . 
-<HOME DOWN> moves to the BLOCKS LEFT entry (if found) 
-<HOME> lets you select the entry number to go to. It won't 
let you advance past the BLOCKS LEFT entry. Note that this 
entry is calculated when EDIT DIRECTORY is selected from the 
menu and it is not affected by editing. 

-<ESCAPE> aborts to main menu. 
-<RETURN> returns to menu after checking for save option. 
-<WILD> sends you to READ BLOCK . Note that this function will assign 
the start block of the file currently be ing edited to the read block 
routine . This makes it easy to examine the current file from the start 
in order to determine the end-of-file. Consult the directory structure 
information in the last section of this manual. You should NOT enter 
read block from the VOLUME entry or any other that will assign an 
illegal block number to the read block function. 

EDIT FUNCTIONS 

I Change name : may be up to 11 chargcters for entry O (VOLUME) or 10 
characters for a file name. Afte~ 10 characters are entered or a <CR>, 
the cursor will move over and wait for a file type (A a H h ) ; just 
press a key for the file type , don' t follow with <CR>. 

II Set Attributes : cursor up and down and press 'y/n' to toggle the bits. 
Pressing <CR> will exit this funct i on. See the DIRECTORY STRUCTURE 
section for more details on attributes . 

The start Block is shown but cannot be modified . It will be calculated 
automatically by DISK DOCTOR for all entries. It is therefore 
essential to properly set the 2 length bytes. 

III Set Reserved Length : tells the directory the maximum size of the file. 
Setting the reserved length will also set the used length . Used length 
must be set after if it is to be smaller. DISK DOCTOR will not check if 
it is bigger. Be careful! 

IV Set used length . This is the actual size of the file in 'K'. 

V Set used length in last block. This is used to determine t he 
end-of-file. 

VI Set Date in YY/ MM/DD format with ranges from 0-99, 0-12, 0-31 . Zero 
values are allowed for special purposes and there is no check for valid 
day-month selection. 

,..-..,__ 



-5-

II READ BLOCK 

Read Block can be entered from the menu with Smart Key II or by the WILD-CARD 
key in Edit Catalog. While in read block, the current file marker is preserved 
and will be restored when WILD-CARD is pressed again. Read block does not allow 
any disk writing. It is only used to verify file types and to determine the 
end_of_file. It uses the following function keys: 

UDLR move around the sector being displayed. 

<TAB> toggles between the ASCII and HEX section 

<CR> beginning of next line 

<HOME> top of sector 

<HOME UP> previous sector. If at sector 0, sector 7 of the previous 
block is displayed. 

<HOME DOWN> next sector . If at sector 7, sector O of the next block 
is displayed. 

<CONTROL-UP> previous block. Will not go beyond 0. 

<CONTROL DOWN> next block . Will not advance beyond disk size. 

<WILD-CARD> returns to Edit Catalog with the current cursor position 
in memory . If you say yes, the current file size and used in last block 
will be transferred to the directory entry. 

Note that a BLOCK consist of 8 128-byte sectors numbered from Oto 7 . To 
'read' through a file , press <HOME DOWN> until you get to the end-of-file. To 
jump ahead or back several blocks, press <ESCAPE> and Smart Key II from the 
edit block menu. Enter a decimal number and press <CR> twice to read in the 
selected block. 

Many ASCII characters cannot be shown on the console and may clutter up the 
display. For this reason, control characters and values above 7FH will be 
represented with a' . '. This will make it easier to look for ASCII data in 
Binary files. Unlike FILEMANAGER, Disk Doctor will not show any inverse video 
characters. 

Read block should also be used if you accidently get bounced to the main menu 
by pressing <ESC> from either read block or edit catalog. Choosing function I 
will re-read the directory and destroy all editing done since the last save. 
Instead, chose function II, then press WILD-CARD to resume the editing at the 
last file . Note that the SAVE CHANGES option is only available from the Edit 
Catalog routine and it is essential to re-enter this way . To cancel the 
current changes or log in a new disk, return to the main menu and press Smart 
Key I. It is advisable to save changes after every few entries to prev ent 
accidental loss. 



-6-
III ANALYZE MEDIUM 

This feature of the program will be invaluable in decoding the files on your disks o~ 
tapes. It will distinguish between Word Processing files, Binary data files, shape 
tables, fast loaded programs, and ASCII files . In addition, i t will search all ASCII 
files and fast loaded programs for REM statements. If you have taken the precaution 
of writing REM statements at the start and end of your programs, most of the hard 
work will take care of itself. Pressing Smart Key III from the opening menu selects 
this function. 

You will be prompted for printer/screen options. It is recommendable to make a paper 
copy of the analysis for use with functions I and II . You will get a 3 page printout 
for single-sided disks . Use the Smart Keys to select the type of printer and the 
type of page end (<FF> or wait). Note that form-feed on the ADAM printer will send 
multiple line feeds . Consult the printer setup options at the end of this manual . 
The printout will list each block starting at 2 . Consult the next page for 
explanations of the analysis. The following partial list will show its use: 

002 WP file 
003 ASCII 
004 ASCII 
005 Fast Load Program REM POKER/REM deal hand/REM evaluate/ 
006 Binary file REM players move/ 
007 Binary file REM POKER/ 
008 Binary file at 30000 
009 Fast Load Program 
010 Binary file 
011 ASCII 
012 ASCII REM move up/REM move down/ 
013 ASCII REM 
014 ASCII REM calculate/REM jump/ 
015 ASCII 
016 Shape Table at 29000 with 36 shapes 
017 Binary file 
018 Binary file 
019 Fast Load Program 

A considerable amount of information is available even from this printout. We know, 
for example that the first file is probably a word processing file with a maximum 
length of 3K. It is possible that it is only 1 or 2 Kand is followed by a short 
BASIC program or an ASCII data file. We know for sure that there is and 'H' type 
BASIC program starting at block 5, and it is a POKER program. We also see the last 
REM statement (actually the start of the program) in block 7 marking the end of the 
program in that block. There is some sort of 'H' data file at block 8 and it is 
definitely lK long loading at 30000. We are sure because there is a fast load 
program in the next block (note that FAST LOAD is the most reliable interpretation). 
The Fast Load Program in block 9 appears to be 1 or 2 K long; we forgot to put REM 
statements in that one. From 11 to 15 is hard to tell, there may be several files or 
programs but we are sure that there is at least one program because of the REM 
statements. ·The rest is easy since this section is all ASCII -- we'll use READ BLOCK 
to decode the text. From block 16 to probably 18, we have a shape table. Note that 
there is no load address shown at 17 or 18, so those blocks did not contain binary 
file headers -- the file must be 3K long. 

~ 



A 

-7-
MEDIUH ANALYSIS INFORMATION 

WP File 
If the first three bytes of a block are 00 01 00 then the file is presumed 
to be in SMARTWRITER format. This can be verified by looking at that 
corresponding block of the disk: the first ASCII byte of the file will be 
in sector 2 byte 3 (one page header plus 3 bytes of pre-header) . 

B Binary File 
If the first three bytes of a block are 01 00 01 then the file is presumed 
to be another 'type H' and the following checks are performed. Note that 
Binary is also the default file type. Binary file by itself only means that 
no other data type was recognized. Note also that the analysis has no way 
of determining the END-OF-FILE. You will have to do that manually. 

Bl Fast Load Program 
This is an 'H' type program created by TURBOLOAD, FAST LOAD , CRUNCH, and 
other similar utilities. It is easily recognized by looking for the 
variable commands (SPC TAB ERRNUM) in the first block of the binary file. 

B2 Shape Table at aaaaa with nn shapes 
If further analysis suggest data consistent with shape table definitions, 
the above line will be shown with the load address and the presumed number 
of shapes. Note that there are a variety of binary data files which would 
be interpreted as shape tables : l,O,l,1,2 , 3,4,5,6,7,8,9,10 . .. for example 
would be incorrectly interpreted as a shape table at 513 with 3 shapes. It 
would be evident from the load address that this information is erroneous. 
If you are dealing with a disk of your own programs, you will probably 
remember things like shape table sizes and load addresses and quickly spot 
the correct entries. Despite its limitations, the interpretation is correct 
most of the time. 

B3 Binary file at aaaaa 
If the analysis does not reveal a fast load program or a shape table, then 
the load address only is shown. Note again that this interpre tation is not 
totally reliable. The load address is shown only in t he first block of 
binary files . A binary data file containing many ones and zeroes might 
confuse the analysis. 

C ASCII 
Whenever the first 40 bytes of a block are composed of ASCII characters 
including <CR> <FF> AD, this analysis is reported. It will happen under 4 
conditions : 

-'A' file type with ASCII data or ASCII BASIC program 
-Subsequent blocks of a Smartwrit e r f ile 
-Long ASCII data imbeded in binary data file 
-Long REM, DATA, or PRINT statements in Fast Load pr ograms 

Note the first 2 occurrences are most common and can usual l y b e trusted. 

The ASCII file check can fail in 3 ins tances: 
-Fewer than 40 bytes used in last block of file 
-Imbeded control characters in PRINT or REM s tatements 
-Special characters in WP files like super/ sub script 



-8-

CHANGE DEFAULT SETUP 

Pressing Smart Key IV from the main menu allows you to change 
display colours and the default drive for operations. From the 
setup menu, press the appropriate Smart Keys and see the colours 
change as you go along. You can set the border, character, and 
cursor colours. 

The default setup also allows you to change the source drive and 
specification. Note that these ch<i.nges will be in effect whenever 
you re-boot Disk Doctor; it is therefore a good idea to set the 
drive type to the configuration of your system. 

To make changes that will affect only the current session, press 
ESCAPE after your selections. For permanent changes, press <CR>: 
You will be prompted for a destination drive. Check what drive 
your Disk Doctor system disk is in and press the appropriate SMart 
Key. 



-9-

DIRECTORY STRUCTURE 

Before using Disk Doctor, it is a good idea to be familiar with the EOS 
directory structure. lfuether using tapes or disks, the EOS treats the media 
as a sequential device . This means that all 'files' are written to contiguous 
blocks. lfuile this approach does not take full advantage of available disk 
space, it reduces the amount of directory information required. 

Each directory entry is 26 bytes long, which allows a total of 39 entries per 
'K' of directory. Both the EOS and DISK DOCTOR automatically handle the few 
extra bytes at the end of each block for Directories of more than lK. Each 
file entry has the following format: 

0 1 2 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

I file name I I I I I I I I 
" " " " " " " " 

file type - -/ I I I I I I 
end-of-name - - -/ I I I I I 
attributes - -/ I I I I 
start block - - - - - - I I I I 
reserved size - I I I 
used size - - - - - I I I 
used in last block I I 
date - - - - - - - - - - - - - -/ 

The file name is limited to 10 characters. The program will let you enter 
ILLEGAL characters as file names, check your user manual for legal charact ers. 

The file name is followed with the type; its maximum position (10) is shown 
above. Disk Doctor will correctly place the type. Enter a name and press 
<CR>, the cursor moves over and wait s for a file type byte (a Ah H), or any 
other character . Again, you are allowed to use special file types. 

The file type is followed by a CHR$(3) which is the signal to the EOS that the 
end-of-name has been reached . The file type is located just before the end-of
name . All data from the end-of-name to position 11 is ignored and does not 
need to be blanked out. 



-10-
DIRECTORY STRUCTURE (continued) 

The attributes byte is a series of bits that identify access to the file: 

BIT Meaning 

7--LOCKED: This bit is affected by BASIC's LOCK and UNLOCK 
functions which prevent a file from being deleted . 
Using EDIT CATALOG, a file can be deleted whether 
locked or not by setting the deleted bit . 

6--WRITE PROTECT: This bit prevents appending or deleting a file 
This bit cannot be s e t from BASIC. 

5 - -READ PROTECT: This bit prevents the OPENing, READing CLOSEing, 
and LOADing , of files from BASIC or SmartWriter. 
It can be useful for protecting programs or data 
that will be loaded in via READ BLOCK . 

4--USER FILE: This bit must be set if the file is to be shown by t h e 
CATALOG command. It can however be overridden by setting 
bit 3 . Regardless , setting the user bit allows normal 
opening, closing, renaming , etc. 

3--SYSTEM FILE : Setting this bit disables the listing of the 
file by normal DIRECTORY or CATALOG functions . 
It has no other effect on file operations. 

2--DELETED FILE: A file may be un-deleted by resetting this bit. 
Make sure, however, t h~t the same file name has not been 
used elsewhere by an active file, or you may confuse the EOS. 

1--EXECUTE PROTECT : This bit prevent~ UNLOCKing a file but will not 
prevent

1
LOCKing. Any f bil

1
e LOCKed wh i le ~his

1
bit is ~ 

set wil not be UNLOCKa e using convent iona means . 
0--BLOCKS LEFT BIT: If this bit is s et, all other information is 

ignored along with all directory entries following it . 
See BLOCKS LEFT ENTRY for more information. 

The START BLOCK bytes identify the start of the file on the media. It uses 4 bytes 
which are placed in registers BCDE to address, in theory, a drive of over 4000 MEG. 

The RESERVED SIZE bytes show the size of the file originally placed in the HOLE. A 
smaller file may res i de in the s ame hole l ater , but it will always occupy the same 
amount of disk space . A reserved size may be up to 65535K since 2 bytes are used for 
this data . Note that START BLOCK+ RESERVED SIZE must equal the START BLOCK of the 
next directory entry for proper management . 

The USED SIZE bytes show the actual length of the file. When a small file is placed 
in a big HOLE, these bytes tell the EOS how many K of file to load in when getting 
the file . 

The USED IN LAST BLOCK bytes are needed since the EOS does not use an END-OF- FILE 
marker in ASCII files . When a file is saved, its exact length is computed and the 
'remainder' placed in these 2 bytes. The EOS will know when re-loading the file, 
exactly how many bytes of the last block to actually read in . All information past 
the USED IN LAST BLOCK pointer will be ignored. 

The last 3 bytes of a directory entry are reserved for a creation date. There is a 
date in the EOS which appears to be the birth date of one of the programmers in 3 BC,..-
numbers YY-MM-DD. There is no function in BASIC, SmartWriter, SmartFiler, or any 
other COLECO software that I know of that makes use of this date. You may reset the 
system date by poking directly in the EOS and all files created today will have 
today's date. Furthermore, jumping to Smartwriter with a JP WP instruction will also 
preserve the system date . 



.r"'\ 

-11-
SPECIAL DIRECTORY ENTRIES 

There are four special entries which look like just like file entries but are used by 
the EOS to work with the directory and MEDIUM. 

VOLUME 

The Volume entry is set by default to FIRST DIR. This is the name that will be 
reported by BASIC when a CATALOG command is issued . It is also the name passed by 
the !NIT function in BASIC. Since the volume name does not need a file type, this 
entry may be up to 11 characters. The attribute byte consists of 80H + the number of 
K reserved for DIRECTORY (see DIRECTORY). This value may be set by placing a 'Y' in 
the PERMANENT PROTECT bit and setting the appropriate number of low-end bits (usually 
1). The Next 4 bytes are SSH AAH OOH FFH; these are simply a series of check bytes 
for a valid directory and Edit Catalog will report this as a start block of 43605. 
Bytes 17 and 18 reflect the size of the medium, 255 for tapes, 160 for disks. The 
other bytes are non-significant and usually zero except for the date which may or may 
not be filled in. 

BOOT 

This entry tells the directory how many K have been reserved for a BOOT block. It 
points by default to Block O with a length of lK and 1024 bytes used. The exact use 
of this entry is unclear since all EOS media have this entry filled out in the same 
way. SMARTBASIC and other systems reserve another entry in the directory for a 
BASIGPGM file which is read and loaded from the BOOT block. The entry should not, 
however, be modified. 

DIRECTORY 

This entry tells the EOS the size of the directory by the 'size used ' information. 
All other data in this entry appears to be insignificant but should not be changed, 
just in case. Note that the VOLUME entry also has a directory size, but it only 
indicates the maximum directory size. To change a directory from 1 to 2 K, both 
these entries must be modified. 

BLOCKS LEFT 

The Blocks left entry indicates the end of the disk or tape. Although it is handled 
slightly differently by BASIC and BASIC II, it only requires 3 parameters: 

Setting the SYSTEM FILE and BLOCKS LEFT bit in the attributes 
regardless of the file name. BASIC II does not even bother 
writing BLOCKS LEFT in the name. 

Setting the start block as for any other entry as the sum of 
previous-file-start and previous-file-size. 

Setting the reserved-size by subtracting the start block from . 
DISK SIZE . If Blocks Left starts at 100, the size should be 
set to 60 for a single sided disk (not 59) . 



-12-

HOW TO USE DISK DOCTOR 

1 Start with a medium that has a bad directory : one that 
results in an 1/0 error when you try to get a CATALOG from BASIC 
or one that Smart Writer refuses to read . 

2 Boot Disk Doctor and select EDIT CATALOG (Function I). 

2a If the Directory reads in OK, then you probably just had a bad 
block read or other erratic problem. Press Smart Key II (change 
attributes) and simply press <CR> to change nothing. This makes 
Disk Doctor think that you have made a change. Now Press <CR> 
again to exit and answer 'Y' to the save question. Sometimes this 
is all that is needed . Try to read the disk again from BASIC or 
WP. 

2b If the Directory Reads OK and some of the information is 
damaged, then a few minor adjustments may be required. Check 
VOLUME BOOT DIRECTORY and BLOCKS LEFT. Damage to some of these 
entries may invalidate the directory. 

2c If the first block is not recognized as a directory, you will 
be asked whether or not to INIT the medium. Always answer 'N' to 
this question the first time through . You will be placed in EDIT 
CATALOG mode with whatever information was read in. Proceed as in 
2b. 

2d If there is no valid directory information , press <ESC> and 
select READ BLOCK. Scan through the first few blocks to 
check for valid 2 or more blocks of directory, for an EOS disk , 
and any other valuable information about the medium before you 
erase what is there. 

2e Re-select EDIT CATALOG. This t ime answer 'Y' to the I NIT 
question. Unless you are absolutely sure, you should always INIT 
a lK Directory . You may indeed have a 2K Directory of which only 
the first K is damaged. After the INIT, proceed to ANALYZE 
MEDIUM. 

3 In any case where Directory informa tion is missing, ANALYZE 
MEDIUM (function III) may help you rebuild. The first step is to 
select printer options; it is well worth the wait as the 
information supplied will be invaluable later on . 



-13-
USING DISK DOCTOR (continued) 

4 Once the VOLUME BOOT DIRECTORY entries have been properly set, 
you can proceed to rebuild. Start at the directory entry and set 
the reserved_length to the correct directory size. Then press the 
down arrow key to check the first file entry. 

4a Press WILD-CARD and switch to READ BLOCK at the start of the 
file. Go through the file (press HOME-DOWN) and set the cursor 
where you think the end of the file is. Then Press WILD-CARD 
again; answer 'Y' to the save question. This automatically 
calculates the file length and the size used in the last block. 

4b Fill in the presumed file name, file type, and attribute . In 
most cases just setting the USER FILE bit to YES and the others to 
NO will be sufficient. 

4c Repeat the above procedure for all files, assigning a unique 
name to each file including dummy names for those files that you 
can't figure out. If you get to a block that is full of ES's, you 
have certainly reached the end of the used space on the medium. ES 
is the value written to every block of disks by the Format 
Program. Tapes on the other hand are filled with zeroes. 
Remember also that the last several blocks of the medium may 
contain invalid or incomplete files, especially if you have 
KRUNCHED the directory and re-arranged the files on the medium to 
recover space. 

5 Review all your work, especially if you have changed any 
reserved_length bytes or if you have used the go-to-entry (HOME) 
function. The automatic recalculation of the directory is done as 
you scroll through the list. Check the start block of each file 
to make sure it is still properly set by consulting the MEDIUM 
ANALYSIS information or by pressing WILD CARD to see the block. 
Don't forget to press <CR> from the Edit Catalog screen to save 
the changes. 

6 Go to Smart Writer and load in all the 'A' files and the 'H' word 
processing files (you can't load the other 'H' files in WP). Check 
the end of the files to see if they have been correctly placed. If 
there is extraneous information at the end, simply remove it and 
re-save the file, preferably to another medium. You don't want 

7 

to mess with your original medium until you have recovered as many 
files as possible . 

Boot BASIC and start working with the FAST LOAD PROGRAMS if 
any. It is usually better to abort the programs as soon as they 
start running with a AC . List the programs to see if they appear 
to be all there, and run them to see if they work correctly. If 
the program LISTs ok but does not work, save it in ASCII format 
(on another medium), re-boot BASIC and try the ASCII version. 
There may have been some extraneous bytes at the end of the file 
which trashed your BASIC. 



-14-
HINTS AND SUGGESTIONS 

There are some special situations which may run you into some difficulty. I will 
try to outline some of the scenarios, but it would be difficult to imagine all 
the possibilities. After you have lost a disk due to some error or hardware 
failure, any amount of information which can be recovered is a bonus . Don't 
expect to get everything back. 

My Disk information seems to be there but I am unable to write to the 
directory block . This might be caused by a spike which has destroyed 
that block of the disk . Use a selective media copy utility like 
FILEMANAGER to copy from block 2 to the end of the media to another disk, 
INIT the other disk, and proceed to analyze and rebuild a directory for 
the new media. 

FAST LOAD PROGRAMS crash into FATAL SYSTEM ERROR . This is usually caused 
by improper setting of file size . As a general rule, setting the file 
size bigger than it should be is not a major problem as it will overwrite 
parts of the bottom of the stack when loaded in. Setting the file size 
too low or much too high is disastrous . Adjust your file size up or down 
by about 1 sector (128 bytes) until you can at least get the program to 
load. Then, save an ASCII version of the program before testing it . 

I have reached entry 39 (the last one) in my directory and still have 
more files to recover. This may h~ppen if you have used a CRUNCH program 
to repack directory entries and recover unused disk space . The files 
that you are now trying to read may either be incomplete or older 
versions of programs which have been updated. The other possibility is 
the small holes left by frequent directory usage . You may also have 
created dummy entries which as far as you are concerned are garbage but 
were needed to keep the directory intact (see reserved-size used-size) . 
Make that garbage part of the previous entry by setting the reserved 
length to the sum of the 2 entries and setting the used length to the 
length of the first file . 

My ASCII BASIC program is missing some lines. If you are missing lines 
at the end, you have likely set your length too short. If the missing 
lines seem erratic, the file length may be too long. Re-load the file 
from SmartWriter and read it through again. The line numbers should be 
sequential. If a line number is followed by a smaller line number, the 
new line will replace the old one. In some cases this may not be a 
problem, but it is often disastrous if the next line happens to be a 
leftover from another program that used to be stored in that block. 

My Program loads ok and lists ok but does not work after loading a b i nar y 
data file . This is almost always due to resetting a data file's length 
greater than it was before. Check your LOMEM or HIMEM settings along 
with the load address and length of the file. Overwriting the LOMEM 
setting almost always results in destroying variable commands. Try a 
PRINT FRE(O) or PRINT TAB(lO);"?" . If t hese don't work, you have written 
to a RAM area below the LOMEM setting. 

;: 



-15-

HINTS AND SUGGESTIONS (continued) 

I can't figure out which data file belongs with which program. 
Sorry, I can ' t help you there. Neither can I tell you which 
version of a program is the most recent one. Note· tha t repeated 
SAVEs of a BASIC program will create 3 files, an 'A' file, an 'a' 
file, and a deleted 'a' file. You may get even more each time the 
file s ize increased by lK . Some of the following suggestions may 
help you avoid problems in the future : 

Put a REM statement at line O of your programs (both ASCII 
and FAST LOAD) . This one will include program name , 
version number, and c reation date . If you change the 
vers ion number each time you save the drafts of the 
program, each file will be unique. 

Put a REM statement at line 65535 of your program , again 
with the program name. When you run across this line in 
READ BLOCK mode , you will know exactly where your program 
ends. Be sure to use the first occurrence of the REM 
statement . Note that FAST LOAD programs are stored top down 
and that your REM statement at the beginning of the program 
will mark the end of the file . 

Waste a few bytes in DATA files to write the name of the 
program tha t they belong to or the function of the file . 
even if it is a Machine Language Code file, add a f ew ASCII 
data bytes after the RET instruction at the end. Programs 
that routinely write to data files should start by writing 
the name of the fi l e and also write a visible end-of-file 
marker. 

Word Processing files present 
if they are letters, reports, 
obvious when scanning through 
Do not l ook at any ASCII data 
first block of a WP file . All 
headers, margins, tabs, etc. 
sector 2. 

less of a problem, espec ially 
etc. It should be very 
the file where the end is. 
in sector O and 1 of the 
that area is reserved f or 
The fil e starts a t byte 3 of 

This may seem to be a lot of work, but why not protect yourself. If you 
go through the trouble of writing a program, it must be because you want to 
keep it . It is also a good idea to keep a WORK DISK on which you have only 
prototypes of programs. Once t hey are debugged, they can be moved to another 
medium. Using this approach will cut down on your l osses if one of your 
prototypes decides to start writi ng to disk at random. 



-16-

PRINTER SETUP 

Disk Doctor, like FILEMANAGER, is configured to be compatible with 
other printers hooked up through the EVE, CENTRONICS, or other 
similar interface. There are default sequences for horizontal 
pitch and letter quality; if they don't work with your printer, 
use a block editor to patch in the changes on your system disk. 

Look at block 8, you should see the following data 

PICA-> 
ELITE-> 
CONDON-> 
NLQOFF-> 
NLQON-> 

10 pitch sequence 
12 pitch sequence 
16.5 or condensed setting 
Draft mode 
Near Letter Quality mode 

Each of these pointers denotes the start of the control sequences 
sent to the printer for the functions indicated. The first byte 
is the length of the sequence (maximwn of 7) and it is followed by 
the control/escape sequence. Patch in the changes as required and 
save them to your system disk. 

Note that all sequences are padded with nulls for additional 
safety. The routine that sends t he sequences exits when it 
encounters a null or when the length of sequence is reached. For 
full compatibility, all sequences should be preceded with a 
correct length byte . 



AJM SOFTWARE - REGISTRATION AND EVALUATION 

NAME 

ADDRESS 

CITY STATE/PROV ZIP/CODE ----------- ----- -----
NAME OF PROGRAM __________ REVISION _____ SERIAL _____ _ 

PURCHASED FROM 

After you have used your new software item, please take a few moments to answer the following questions. 
Your comments may be valuable in the preparation of upgrades to the program, or in the design of new 
software items. If you take the time to register your software, you will be advised of upgrades, and problems 
that may arise from the use of the software. The program name and revision date should appear on the boot 
screen, and the serial number should be on the original disk label. 

PLEASE RATE THE FOLLOWING ITEMS FROM OTO 5 WHERE 0 IS WORSE AND 5 IS BEST 
RATING COMMENTS 

WRITTEN INSTRUCTIONS 

ON SCREEN INSTRUCTIONS(menusJ 

USE OF COLOUR 

USE OF SOUND(it any) 

IS THE PROGRAM SMOOTH FLOWING? 

IS THE PROGRAM EASY TO USE? 

DOES IT SERVE YOUR PURPOSE? 

WHAT ELSE WOULD YOU LIKE IT TO DO? 

SEND YOUR REGISTRATION/EVALUATION TO: Guy Cousineau 
1059 Hindley Street 
OTTAWA Canada 
1<28 5L9 








